

PAPUA NEW GUINEA UNVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE FIRST SEMESTER EXAMINATIONS - 2022

FIRST YEAR GEOGRAPHICAL INFORMATION SCIENCE AND SURVEYING

MA117 - MATHEMATICS 1 SV (A+B)

TIME ALLOWED: 3 HOURS

INSTRUCTIONS FOR CANDIDATES

- 1. You have 10 minutes to read this paper. You are **not** to write during this time.
- 2. This examination consists of two sections:
 - Part A 10 Multiple Choice Questions worth 1 mark each to give a total of 10 marks.
 - Part B 6 Long Answer Questions worth 15 marks each to give a total of 90 marks.
- 3. Write ALL answers in the answer booklet provided.
- 4. For **Multiple Choice**, organise first page (page 1) of your answer booklet by numbering 1-10 and write the correct letter of your answer next to question number.
- 5. There are ten (10) multiple choice questions and you are to write the letter A, B, C or D of the correct answer onto the first page (page 1) of the answer booklet provided.
- 6. There are six (6) long answer questions. Start long questions on page 2 of the answer booklet.
- 7. Start each question of Part B (Long Answer Questions) on a new page and clearly write its question number at the top of the page.
- 8. Show all necessary working out in the booklet provided.
- 9. Scientific and business calculators are allowed.
- 10. Write your name and ID number clearly on the examination answer booklets and sign off.
- 11. Mobile phones must be switched off during the examination period.

Marking Scheme

Marks are as indicated at the beginning of each question.

Total Mark is 100

PART A – MULTIPLE CHOICE: Write the correct letter **A**, **B**, **C** or **D** next to question number on the first page (page 1) of your examination answer booklet.

Question 1 If the two equal sides of a right triangle measures 9 cm, then the hypotenuse will be:

A 9 cm

B $9\sqrt{2}$ cm

C $9\sqrt{3}$ cm

D $18\sqrt{2}$ cm

Question 2 If the sine and cosine of an angle are both negative; which quadrant will this angle lie?

A 1st quadrant

B 2nd quadrant

C 3rd quadrant

D 4th quadrant

Question 3 If the bearing of Q from P is 225°, this is the same as:

A S45°E

B S45°W

C N45°E

D N45°W

Question 4 If α is an acute angle and $\sin \alpha = \frac{\sqrt{3}}{2}$; express α it in terms of π radians.

A $\frac{\pi^c}{3}$

 $\mathbf{B} = \frac{\pi^c}{4}$

 $C \frac{\pi^c}{5}$

 $D = \frac{\pi^6}{6}$

Question 5 What would be the value of x^c expressed in term of π if $\cos \frac{\pi^c}{6} = \sin x^c$?

A $\frac{\pi^c}{6}$

 $\mathbf{B} = \frac{\pi^c}{4}$

 $C \frac{\pi^c}{3}$

 $\mathbf{D} \frac{\pi^{\alpha}}{2}$

Question 6 If $f(x) = 2x^2 - 1$; what will be value of f'(2)?

A 5

B 6

C ′

D 8

Question 7 If $\frac{dy}{dx} = 5x^2 - 2x$; find $\frac{d^2y}{dx^2}$.

A 5x - 2

B 10x - 2

C = 10x - 2x

D 5x - 2

Question 8 The integral of $y = 2e^{2x}$ is:

A $e^{2x} + c$

B $2e^{2x} + c$

C $4e^{2x} + c$

D $4e^x + c$

Question 9 Evaluate $\int_0^{\frac{\pi}{2}} (2 \cos x) dx$.

 $\mathbf{A} = 0$

B 1

C 2

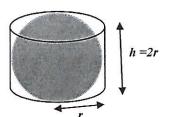
D 3

Question 10 In the Polar coordinate system, $\tan \theta$ when expressed in Cartesian coordinate system is?

 $A = \frac{1}{x}$

 $\mathbf{B} = \frac{1}{\nu}$

 $C = \frac{x}{y}$

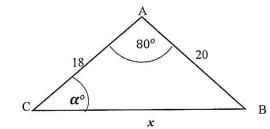

 $\mathbf{D} = \frac{y}{x}$

PART B. Write question number on a new page in the answer booklet and show all necessary working out.

Question 11

$$[6+6+3=15 \text{ marks}]$$

A sphere of radius (r) with volume $\frac{4000\pi}{3}$ cm³ fits into a cylinder such that the top of the sphere is level with the height (h) of the cylinder. Find the volume of the cylinder and express it in terms of π .


- (a) Find the value of r using volume of sphere formula
- (b) Express volume of the cylinder in terms of r.
- (c) Find the volume of the cylinder and express it in terms of π .

Question 12

$$[5+5+5=15 \text{ marks}]$$

The sides of the triangle (*see opposite*) are in centimetres and its angles are in degrees. Find the following and give your answers correct to one decimal place.

- (a) The area of triangle ABC.
- (b) Side x.
- (c) Angle α .

Question 13

[3+4+4+4=15 marks]

A light airplane flies due south, then turns and flies 20 kilometres due east. The light airplane then has a bearing of 150° from its starting point.

- (a) Represent the above information in a diagram form.
- (b) Find the distance the light aircraft flew due south correct to one decimal place.
- (c) What distance is the light airplane from the starting point?
- (d) Find the bearing of the starting point from the plane at that time.

Question 14

$$[5+5+5=15 \text{ marks}]$$

- (a) Sketch the graph of $y = 9 x^2$ and y = 0 on the same axis and shade the region enclosed by these graphs.
- (b) Find the points of intersection of $y = 9 x^2$ and y = 0.
- (c) Calculate the area of the region bounded by the curve $y = 9 x^2$ and y = 0.

Question 15

[8+7 = 15 marks]

- (a) If $u = 2x e^{-2x}$ and $v = 5 e^{sinx}$; find $\frac{dy}{dx} (uv)$.
- (b) Find the equation of a curve that passes through (2, 3) and its slope is given by $\frac{dy}{dx} = 3x^2 4x$ at any point.

Question 16

[10+5 = 15 marks]

- (a) Find the Cartesian coordinate equation for $\theta = \frac{2\pi}{3}$ and sketch it.
- (b) Find the Polar coordinate equation for 2x + y = 4 by expressing it in term of r. Find r if $= \frac{\pi}{2}$.

..... End of Semester 1 Examination

Function: f(x)	Standard derivatives: $dy/dx = f'(x)$	Standard integrals: $\int f(x)dx = F(x)$
$f(x) = ax^n$ Power rule	$f'(x) = anx^{n-1}$	$F(x) = \frac{ax^{n+1}}{n+1} + c$
f(x) = c	f'(x) = 0	F(x) = cx + c
$F(x) = (ax + b)^n$	$f'(x) = na(ax + b)^{n-1}$	$F(x) = \frac{(ax+b)^{n+1}}{a(n+1)}$
f(x) = uv Product rule	$f'(x) = v \frac{du}{dx} + u \frac{dv}{dx}$	$F(x) = uv - \int v du$
$f(x) = \frac{u}{v}$ Quotient Rule	$f'(x) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $f'(x) = \frac{dy}{du}x\frac{du}{dx}$	
Chain Rule	$f'(x) = \frac{dy}{du} x \frac{du}{dx}$	
$f(x) = a \sin bx$	$f'(x) = ab \cos bx$	$F(x) = -\frac{a}{b}\cos bx + c$
$f(x) = a \cos bx$	$f'(x) = -ab \sin bx$	$F(x) = -\frac{a}{b}\sin bx + c$
$f(x) = a \tan bx$	$f'(x) = ab \sec^2 bx$	$F(x) = -\frac{a}{b} \ln(\sec bx) + c$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Discriminant

$$\Delta = b^2 - 4ac$$

Pythagoras Theorem

$$c^2 = a^2 + b^2$$

The sum of the squares of the two shorter sides equals the square of the hypotenuse

Sine Rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Are of a triangle:

 $\frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ac \sin B$

Cosine Rule:

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$\cos A = \frac{b^2 + c^2 - c^2}{2bc}$$

Polar Coordinate System

$$x = r \cos \theta$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$y = r \sin \theta$$

$$tan\theta = \frac{y}{x}$$

$$r^2 = x^2 + y^2$$

$$r = \sqrt{x^2 + y^2}$$

Mensuration

Tracambar actors	4			
Shape or Solid	Perimeter	Area	Surface Area	Volume
Regular Pentagon	P = 5 x side	$A = \frac{1}{2} bh + \frac{1}{2} (a+b)h$		
Regular Hexagon	$P = 6 \times side$	A = (a+b)h		The state of the s
Circle	$C=2\pi r=\pi d$	$A = \pi r^2 = \frac{1}{4} \pi d^2$	The Mark Conference of the Conference of	
Sphere			$SA = 4\pi r^2$	$V = \frac{4\pi r^3}{3}$
Cylinder (closed)			$SA = 2\pi r^2 + 2\pi rh$	V= πr²h
Any solid	4-10 10000 10000		SA= sum of areas around the shape	V = cross-section Area x length