# PAPUA NEW GUINEA UNVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

# SECOND SEMESTER EXAMINATIONS - 2021

## FIRST YEAR APPLIED SCIENCE MATHEMATICS

## MA125 – MATHEMATICS 2 AS (A)

#### **TIME ALLOWED: 3 HOURS**

## INSTRUCTIONS FOR CANDIDATES

- 1. You have 10 minutes to read this paper. You are not to write during this time.
- 2. This examination consists of two sections:
  - Part A 15 Multiple Choice Questions worth 2 marks each to give a total of 30 marks.
  - Part B 7 Long Answer Questions worth 10 marks each to give a total of 70 marks.
- 3. Write ALL answers in the answer booklet provided.
- 4. For **Multiple Choice**, organise first page (page 1) of your answer booklet by numbering 1-15 and write the correct letter of your answer next to question number.
- 5. There are fifteen (15) multiple choice questions and you are to write the letter A, B, C or D of the correct answer onto the first page (page 1) of the answer booklet provided.
- 6. There are seven (7) long answer questions. Start long answer questions on page 2 of the answer booklet.
- 7. Start each question of Part B (Long Answer Questions) on a new page and clearly write its question number at the top of the page.
- 8. Show all necessary working out in the booklet provided.
- 9. Scientific and business calculators are allowed.
- 10. Write your name and ID number clearly on the examination answer booklets and sign off.
- 11. Mobile phones must be switched off during the examination period.

#### **Marking Scheme**

Marks are as indicated at the beginning of each question.

Total Mark is 100

## PART A - MULTIPLE CHOICE:

 $[2 \times 15 = 30 \text{ marks}]$ 

Write the correct letter A, B, C or D next to question number in the first page (page 1) of your examination answer booklet.

The general equation of an exponential function is  $y = Aa^{kx} + b$ . The condition for a **Question 1** decay function is when:

**A** 
$$a > 0, k > 0$$

**B** 
$$a > 1, k > 1$$

**B** 
$$a > 1, k > 1$$
 **C**  $a > 1, k > 0$  **D**  $a > 1, k < 0$ 

**D** 
$$a > 1, k < 0$$

You deposit K200 into a bank account. Every year that account increases exponentially **Question 2** by 10%. What is the equation of the investment?

**A** 
$$y = 210(1.10)^x$$
 **B**  $y = 200(1.10)^x$  **C**  $y = 210(0.10)^x$  **D**  $y = 200(0.10)^x$ 

**B** 
$$y = 200(1.10)^x$$

C 
$$y = 210(0.10)^x$$

**D** 
$$y = 200(0.10)^x$$

Question 3 If  $\frac{dy}{dx} = 6x^5 - 5x^4$ ; what will be the expression for  $\frac{d^2y}{dx^2}$ ?

**A** 
$$x^6 - x^5$$

**A** 
$$x^6 - x^5$$
 **B**  $x^4 - x^3$ 

C 
$$30x^4 - 20x^3$$
 D  $30x^6 - 20x^5$ 

**D** 
$$30x^6 - 20x^5$$

Question 4 The derivative of  $f(x) = e^{2x} + \sin x$  is:

A 
$$2e^{2x} + \cos x$$

**B** 
$$2e^{2x} - \cos x$$
 **C**  $e^{2x} + \cos x$  **D**  $e^{2x} - \cos x$ 

$$\mathbb{C} e^{2x} + \cos x$$

$$\mathbf{D} \quad e^{2x} - \cos x$$

Question 5  $\int (6x^5 - 3x^2) dx =$ 

**A** 
$$30x^6 - 6x^3 + c$$
 **B**  $x^6 - x^3 + c$  **C**  $30x^4 - 6x + c$  **D**  $x^5 - x^3 + c$ 

**B** 
$$x^6 - x^3 + a$$

C 
$$30x^4 - 6x + 6$$

**D** 
$$x^5 - x^3 + a^3$$

Question 6  $\int_1^3 (2x) dx =$ 

Question 7 What is the total sample space if you toss a six-face die 3 times?

| Question 8        | A and B are independent events | If $P(A \cap B) = \frac{2}{9}$ | and P(B) = $\frac{1}{3}$ ; th | en P(A) is:                 |
|-------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------------|
| $A = \frac{1}{3}$ | $\mathbf{B} \frac{2}{3}$       | $C = \frac{1}{27}$             |                               | $\mathbf{D} = \frac{2}{27}$ |

**Question 9** The value of  $\binom{8}{4}$  is

**A** 60

**B** 65

**C** 70

**D** 75

Question 10 The average of a certain test is 35 and the standard deviation is 5.

What would be Paul's z-score if he score is 50 in that test?

**A** 2

**B** 3

**C** 4

**D** 5

Question 11 How many terms will be in the expansion of (5x + 2)(7 - 3x)(2 - x)(2x - 3)

**A** 4

B 8

**C** 12

**D** 16

**Question 12** The test used to check if events A and B are independent is:

$$\mathbf{A} \qquad \quad \mathbf{P}(\mathbf{A} \cup \mathbf{B}) = \mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B})$$

$$\mathbf{B} \qquad \mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B})$$

$$\mathbf{C}$$
  $P(A \cup B) = P(A) + P(B)$ 

$$\mathbf{D} \qquad \mathbf{P}(\mathbf{A} \cap \mathbf{B} = \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{B})$$

**Question 13** How many students sat for a test which has a mean  $(\mu)$  of 30 and the sum of all the score to be 1560?

**A** 52

**B** 520

**C** 30

**D** 300

**Question 14** The 2<sup>nd</sup> derivative of  $y = 3x^2$  is:

 $\mathbf{A}$  6x

**B** 6

 $\mathbb{C}$   $x^3$ 

 $\mathbf{D} \quad \mathbf{x}^2$ 

**Question 15** The indefinite integral of  $\int 2 dx$  is:

 $\mathbf{A} \quad 0 + \mathbf{c}$ 

 $\mathbf{B} = 2 + \mathbf{c}$ 

 $\mathbb{C}$  2x + c

**D**  $2x^2 + c$ 

Write question number on a new page in the answer booklet and show all necessary working out.

**Question 16** 

$$[2+2+2+2+2=10 \text{ marks}]$$

At the beginning of a population study, the population of Morobe Province was 300,000. Two years later, the population was 320,000. Assume the population grows exponentially according to the function  $P(x) = P_0 e^{kt}$  where  $P_0$  is the initial population, P is the Population at a given time (t), k is the growth rate and t is time in years

- a) What would be the growth rate (to 3 decimal places) of the population using the information given above?
- b) Find the growth model by inserting the values of  $P_0$  and k into the function  $P(x) = P_0 e^{kt}$ .
- c) What would be the population (to nearest whole number) of Morobe 6 years after the start of the study?
- d) How long (to one decimal place) after the start of study will the population be twice as much as when the study began?
- e) Sketch the function P(x) with population along the y-axis and time, t, along the x-axis.

**Question 17** 

$$[2 + 4 + 4 = 10 \text{ marks}]$$

The equation of a curve is  $y = e^{2x} - \sin x$ .

- (a) Find the first derivative of the curve given above.
- (b) Find the equation of the tangent to the curve at x = 0 and write the answer in the standard form.
- (c) Find the equation of the normal to the curve at x = 0 and write the answer in the standard form.

**Question 18** 

$$[2+4+2+2=10 \text{ marks}]$$

If the graph of  $y = 3x^2 - 2x^3$  is given, then:

- (a) find the y intercept of the graph.
- (b) find the stationary points (or turning points) of the graph.
- (c) determine the nature of each turning point with working out.
- (d) sketch the graph of  $y = 3x^2 2x^3$  clearly showing the y-intercept and the turning points.

**Question 19** 

$$[5 + 5 = 10 \text{ marks}]$$

If  $f(x) = 2x^2$  and g(x) = 2x + 4, then:

- (a) find the points of intersection between f(x) and g(x) and
- (b) find the area between the two curves where  $g(x) \ge f(x)$ .

#### Question 20

$$[5 + 5 = 10 \text{ marks}]$$

A and B are two events with  $P(A) = \frac{1}{3}$ ,  $P(B) = \frac{x}{4}$  and  $P(A \cup B) = \frac{3x}{4}$ .

- (a) Find the value of x which makes events A and B <u>mutually exclusive</u> to each other and hence write down the values of P(B) and  $P(A \cup B)$ .
- (b) Find the value of x which makes events A and B independent to each other and hence write down the values of P(B) and  $P(A \cup B)$ .

#### Question 21

[5 + 5 = 10 marks]

Given that  $\frac{d^2y}{dx^2} = -10\sin 2x + 8\cos 2x$ , find the:

- (a) equation of the first derivative when  $x = \pi$  and  $\frac{dy}{dx} = 20$ , and
- (b) primitive (or original) function, y = f(x), when x = 0 and y = 6

#### **Question 22**

[3+4+2+1=10 marks]

Below are Mathematics test score for 25 students:

| 20 | 15 | 13 | 17 | 14 | 15 | 16 | 20 | 15 | 12 | 18 | 19 | 15 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 14 | 20 | 13 | 15 | 18 | 14 | 15 | 20 | 19 | 15 | 13 | 15 |    |

(a) Arrange the above data using a frequency table with headings as given below.

| Score (x) | Frequency (f) | Frequency x score (fx) | Deviation $( x - \mu )$ | Squared deviation $( x - \mu ^2)$ |
|-----------|---------------|------------------------|-------------------------|-----------------------------------|
|-----------|---------------|------------------------|-------------------------|-----------------------------------|

- (b) Calculate or find the range, mode, median and the mean from the frequency table.
- (c) Calculate the variance, standard deviation from the frequency table.
- (d) Calculate the z-score for a student who scored 18 in the Mathematics test.

..... End of Semester 2 Examination .....

## MA125 SEMESTER 2 EXAMINATION FORMULA SHEET 2021

| Function           | Derivative (dy/dx)              | Integral                          |
|--------------------|---------------------------------|-----------------------------------|
|                    | $\frac{dy}{dx} = f'(x) = g'(x)$ | $\int f(x)dx + c = F(x) + c$      |
| $f(x) = ax^n$      | $f'(x) = nax^{n-1}$             | $F(x) = \frac{ax^{n+1}}{n+1} + c$ |
| $f(x) = a \sin bx$ | $f'(x) = ab \cos bx$            | $F(x) = -\frac{a}{h}\cos bx + c$  |
| $f(x) = a \cos bx$ | $f'(x) = -ab \sin bx$           | $F(x) = \frac{a}{b} \sin bx + c$  |
| $f(x) = e^{bx}$    | $f'(x) = be^{bx}$               | $F(x) = \frac{1}{b}e^{bx} + c$    |

## **Probability Rules**

Addition Law:

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

Multiplication Law:

 $P(A \cap B) = P(A) \times P(B)$ 

|                        | Descriptive Statistics                 | Discrete Random Variable                     |
|------------------------|----------------------------------------|----------------------------------------------|
| Mean (μ)               | $\frac{\sum fx}{\sum f}$               | $\sum xP(x)$                                 |
| Variance (σ²)          | $\frac{\sum (x-\mu)^2}{\sum f}$        | $\sum (x-\mu)^2 P(x)$                        |
| Standard Deviation (σ) | $\sqrt{\frac{\sum (x-\mu)^2}{\sum f}}$ | $\sqrt{\sum (x-\mu)^2 P(x)}$                 |
| Notes:                 | x-score $f-frequency$                  | $x - random\ variable$<br>P(x) - probability |

**Binomial Theorem:**  $\sum_{r=0}^{n} {n \choose r} a^{n-r} b^r$  where  $0 \le r \le n$  and also  ${n \choose r} = \frac{n!}{r!(n-r)!}$ 

Binomial Probability Distribution:  $P(x=r) = \binom{n}{r} p^r q^{n-r} \text{ where } \binom{n}{r} = \frac{n!}{r!(n-r)!}$ 

Combination Formula:  $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ 

 $Z-Score = \frac{x-\mu}{\sigma}$