

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE FIRST SEMESTER EXAMINATIONS – 2023

SECOND YEAR BACHELOR OF TECHNOLOGY IN SURVEYING & BACHELOR OF GEOGRAPHIC INFORMATION SCIENCE

MA 215 - MATHEMATICS 2 SV

TIME ALLOWED: 3 HOURS

INSTRUCTIONS FOR CANDIDATES

- 1. You have 10 minutes to read through this paper. You must **NOT** begin writing during this time.
- 2. There are six (6) questions. Answer ALL questions.
- 3. Write all answers in the answer booklet(s) provided.
- 4. All workings should be shown clearly in the answer booklet(s).
- 5. Start each question on a new page and clearly write its question number at the top of the page.
- 6. Calculators are allowed in the examination room.
- 7. Mobile phones **must** be switched off during the examination period.
- 8. Make sure that your **name**, **surname** and **ID number** are clearly written on the front of the examination answer booklet(s).
- 9. Check to see that a formula sheet is attached.

MARKING SCHEME

Questions carry marks as indicated. Total marks is 100.

MA215-2023 Page 1

Question 1: [5+5=10 marks]

- (a) Given $f(x, y) = y^3 e^{-5x}$, calculate $f_{xy}(0,1)$.
- (b) Given $y = e^{-x^2}$, find the expression for $\frac{d^2y}{dx^2}$.

Question 2: [4+5+4+3=16 marks]

For the curve function $x^3 + y^3 = 9$, answer the following questions:

- (i) Find $\frac{dy}{dx}$ at the point (1,2).
- (ii) Find $\frac{d^2y}{dx^2}$ at the point (1,2).
- (iii) Calculate the curvature at the point (1,2), giving your answer correct to 4 decimal places.
- (iv) Calculate the radius of curvature at the point (1,2), giving your answer correct to 4 decimal places.

Question 3: [5 + 8 + 5 = 18 marks]

Given the function $y = \frac{x}{x^2 + 1}$;

- (i) find $\frac{dy}{dx}$ at x = 0.
- (ii) find the stationary points of function and determine its nature.
- (iii) find the definite integral of the function from x = 2 to x = 3. (give answer in simplified ln)

Question 4: [4+6+6=16 marks]

A curve C is defined by these parametric equations:

 $x = \sin t$ and $y = \cos(2t)$, for $0 \le t \le \pi$ where t is a parameter.

- (i) Find the expression for $\frac{dx}{dt}$ and $\frac{dy}{dt}$.
- (ii) Find the gradient of the tangent at the point P on the curve where $t = \frac{\pi}{6}$.
- (iii) Find the <u>equation</u> of the normal to the curve at the point P on the curve where $t = \frac{\pi}{6}$.

Question 5: [6+6=12 marks]

Given $y = x \ln x$;

- (i) calculate its $\underline{\mathrm{indefinite}}$ integral using formula: $I = uv \int u'v \ dx$.
- (ii) calculate its <u>definite</u> integral from x = 1 to x = 2, giving your answer correct to 4 decimal places.

Question 6: [(9+5+6)+8=28 marks]

- (a) The linear function f(x) = x 3 and quadratic function $g(x) = x^2 3x$ intersects at two points.
 - (i) Sketch the graphs of both functions on the <u>same</u> set of axis clearly showing these features: x & y intercepts, stationary point and points of intersection.
 - (ii) Find the **exact** area of the region enclosed by the two graphs.
 - (iii) Find the volume of the solid formed by revolving the region between f(x) and g(x) about the x-axis.
- (b) Find the area of the shaded region enclosed by the straight line f(y) = y and the curve $g(y) = y^2 2$, as shown below:

END OF EXAMINATION

Formula Sheet

Name of Rule	Formula
Area under the curve	b C
	$A = \int_{a} f(x) dx$
Area between 2 curves	$A = \int_{a}^{b} [f(x) - g(x)] dx$
Volume of Solid	
(i) Rotation about x-axis	(i) $V = \pi \int_a^b y^2 dy$
(ii) Rotation about y-axis	(ii) $V = \pi \int_{a}^{b} x^2 dy$
(iii) Regions bounded by two functions	(iii) $V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx$
Quadratic formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Function	Integral
COS X	$\sin x + c$
$\sin x$	$-\cos x + c$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$
	$\left \frac{-e^{ax+b}+c}{a} \right $
cos(ax+b)	
	$\frac{1}{a}\sin(ax+b)+c$
$\frac{1}{x}$	α
X	ln x+c
1	
ax + b	$\frac{1}{a}\ln(ax+b)+c$
Function	Derivative
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$ \begin{array}{c} cos[f(x)]\\ sin[f(x)] \end{array} $	-sin[f(x)].f'(x) $cos[f(x)].f'(x)$
Product Rule	u'v + uv'
Quotient Rule	u'v - uv'
	v^2
Curvature	$k = \frac{\left \frac{d^2y}{dx^2}\right }{3}$
	$\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}}$
Radius of Curvature	$R = \frac{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}}}{\left \frac{d^{2}y}{dx^{2}}\right }$
	$\left \frac{u^{-}y}{dx^{2}} \right $
Two perpendicular Lines	$M_1M_2=-1$
Equation of line	$y - y_1 = m(x - x_1)$