

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SECOND SEMESTER EXAMINATION – 2023

SECOND YEAR BACHELOR OF PROPERTY PROFESSIONAL STUDIES

MA226 – QUANTITATIVE METHODS 2 (BPST2)

TIME ALLOWED: 3 HOURS

INSTRUCTIONS FOR CANDIDATES

- 1. Write your name and student number clearly on the front of the examination answer booklet.
- 2. You have **10 minutes** to read this paper. You must **not** begin writing during this time.
- 3. This paper contains five (5) questions. You are to answer all the questions.
- 4. All answers must be written on the **examination answer booklet(s)** provided. No other written materials will be accepted.
- 5. Start the answer for each question on a **new** page. Do **not** use red ink.
- 6. Notes, textbooks, mobile phones and other devices are not allowed in the examination room.
- 7. Scientific and business calculators are allowed in the examination room.
- 8. A formula sheet is attached to this examination paper.

MARKING SCHEME

Marks are as indicated at the beginning of each question. Total mark is 100.

Question 1 [(6+2+2)+(2+4+4)] = 20 marks]

	В	B°	
А	й.		2/5
A ^c			
	3/10		1.00

(a) A and B are *mutually exclusive* events such that P(A) = 2/5, P(B) = 3/10.

Use this information to:

(i) copy and complete the table above and express answers in simplified fraction form.

(ii) find $P(A/B^{c})$.

(iii) find $P(A^{c}/B^{c})$.

(b) A bag contains 3 red, 2 blue, and 1 white marbles. A marble is selected at random from the bag and not replaced before the second marble is selected. Find the probability that:

(i) both marbles drawn being red.

(ii) at least one marble drawn is white.

(iii) both marbles drawn are of same colour.

Question 2 [2+3+3+3+3+3+3=20 marks]

Below are results of 13 students who sat for a test out of 30 marks.

28 20 25 23 27 21 29 19 26 22 24 30	19 26 22 24 30	26	19	29	21	27	23	25	20	28
-------------------------------------	----------------	----	----	----	----	----	----	----	----	----

From the data set above, and express your answers to 2 decimal places where applicable, find the:

- (a) median.
- (b) mean.
- (c) interquartile range.
- (d) variance.
- (e) standard deviation.
- (f) z-score of the student who scored a 28 in this test.
- (g) **t-score** of the student who scored a **20** in this test.

Question 3 [10+2+2+2+2+2=20 marks]

The table below shows the number of children per household in West Taraka Suburb.

Number of children per household (x)	0	1	2	3	4
Probability (%)	1%	3%	50%	30%	16%
xP(x)				т	
$(x-\mu)^2 P(x)$				· · · · · · · · · · · · · · · · · · ·	8

(a) Copy and complete the table for xP(x) and $(x - \mu)^2 P(x)$ rows.

(b) Calculate the expected value (μ) of the number of children per household.

(c) Calculate the variance (σ^2) of the number of children per household to 5 decimal places.

(d) Calculate the standard deviation (σ) of the number of children per household to 5 decimal places.

- (e) What is the probability of having at the most 1 child per household? Is that usual?
- (f) What is the probability of having at the least 3 children per household? Is that usual?

Question 4 [(2+4+2+2)+(2+2+3+3)=20 marks]

- (a) Globally approximately 10% of all people are left-handed. Five (5) people were involved in this experiment.
 - (i) Argue that it is a binomial experiment.
 - (ii) Calculate $P(x \le 1)$ to 5 decimal places.
 - (iii) Calculate the mean for this experiment.
 - (iv) Calculate the standard deviation for this experiment to 5 decimal places.
- (b) The average number of accidents at a level-crossing every year is 5 and has a Poisson distribution. Calculate the probability, to 5 decimal places, that there are:
 - (i) no accidents.
 - (ii) exactly 2 accidents.
 - (iii) at the most 2 accidents.
 - (iv) at the least 3 accidents.

Question 5 [5+5+5+5=20 marks]

Suppose a random variable (x) is continuous over the interval [0, 0.6]. Find $P(0.1 \le x \le 0.5)$ for each of the probability functions f(x) given below.

(a) f(x) = 2(b) f(x) = 2x(c) $f(x) = 3x^2$ (d) $f(x) = \frac{1}{2}$

..... End of Examination.....

MA226 SEMESTER 2 EXAMINATION FORMULA SHEET 2023

	В	Bc	
A	$P(A \cap B)$	$P(A \cap B^c)$	P(A)
Ac	$P(A^{c}\cap B)$	$P(A^c \cap B^c)$	P(A) ^c
	P(B)	P(B) ^c	1.00

$P(A/B) = \frac{P(A \cap B)}{P(B)}$	$P(B/A) = \frac{P(B \cap A)}{P(A)}$
$P(A^{c}/B) = \frac{P(A^{c} \cap B)}{P(B)}$	$P(B^{c}/A) = \frac{P(B^{c} \cap A)}{P(A)}$
$P(A/B^{c}) = \frac{P(A \cap B^{c})}{P(B^{c})}$	$(B/A^c) = \frac{P(B \cap A^c)}{P(A^c)}$
$P(A^{c}/B^{c}) = \frac{P(A^{c} \cap B^{c})}{P(B^{c})}$	$P(B^{c}/A^{c}) = \frac{P(B^{c} \cap A^{c})}{P(A^{c})}$

Conditional Probability Tables

Laws of Probability

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. If event A and B are mutually exclusive, then $P(A \cap B) = 0$

Descriptive Statistics & Normal Distribution

	Formula		Formula
Average	$\mu = \frac{\sum fx}{\sum f}$	z - score	$z - score = \frac{x - \mu}{\sigma}$
Variance	$\sigma^2 = \frac{\sum (x - \mu)^2}{\sum f}$	t - score	t - score = 10z + 50
Standard deviation	$\sigma = \sqrt{\frac{(x-\mu)^2}{\sum f}}$	skewness	$Sk = \frac{3(\mu - median)}{\sigma}$

Binomial Theorem:	$(a+b)^n = \sum_{0}^n \binom{n}{r} a^{n-r} b^r \text{when}$	$re \ 0 \ \leq r \ \leq n$
Binomial Distribution:	$P(x=r) = \binom{n}{r} p^r q^{n-r}$	where $0 \le r \le n$
Poisson Distribution:	$P(x=r)=\frac{e^{-\lambda}\lambda^x}{x!}$	for $r = 0, 1, 2, 3, \dots$
Type equation here.	Discrete Random Variable	Binomial Experiment

Type equation here.	Discrete Random Variable	Binomial Experiment
Mean (µ)	$\sum xP(x)$	np
Variance (σ ²)	$\sum (x-\mu)^2 P(x)$	npq
Standard Deviation (σ)	$\sqrt{\sum (x-\mu)^2 P(x)}$	\sqrt{npq}

In Poisson Distribution:

Mean (λ) = Variance (σ^2) = Standard Deviation (σ) = np