THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY MECHANICAL ENGINEERING

SECOND SEMESTER EXAMINATION - 2022

Mechatronics ME 421 October 25th, 2022

MAXIMUM MARKS: 40

TIME ALLOWED: 2 HOURS

INSTRUCTIONS FOR CANDIDATES:

- You have 10 minutes to read the paper. You must not begin writing during this time.
- 2. Answer all the FOUR questions. Marks or each part of the questions are indicated in the bracket.
- 3. Use only ink. Do not use pencil or writing except or drawing and sketches.
- 4. All answers must be written in the answer book provided. No other written material will be accepted.
- 5. Write your name and ID number clearly on the front page of the answer booklet provided. Do it now!
- 6. Use of Calculator in the exam room is permitted. Notes and textbooks are not allowed. Required property values are provided in the question paper.

Question 1

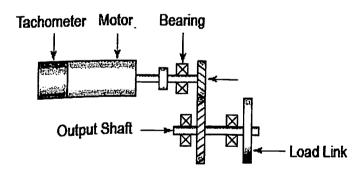
Discuss Impedance in Analogue Circuits.

10 Marks

Question 2

Discuss Sensor Performance Terminology

10 Marks


Question 3

Discuss Seismic Mass Operating Principle

10 Marks

Question 4:

The drive system shown below has a gear ratio of N:1. Assume that the motor is a PM DC motor. Develop a dynamic model that relates the input voltage applied to the motor to the motor speed as measured by a tachometer mounted on the motor shaft. The tachometer has sensitivity $k_{\rm tachometer} \times v / rpm$. Let the viscous damping coefficient at the input shaft be b_1 and at the output shaft be b_2 . Assume that the shafts are rigid, and let l_1 represents the combined inertia of the motor shaft, input shaft, coupling, and the pinion, and l_2 represents the combined inertia of the gear, the output shaft, and the load link.

10 Marks