THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MINING ENGINEERING

FIRST SEMESTER EXAMINATION - 2022

2ND YEAR MINING ENGINEERING & 2ND YEAR MINERAL PROCESSING ENGINEERING

MN212 - THERMO-FLUIDS

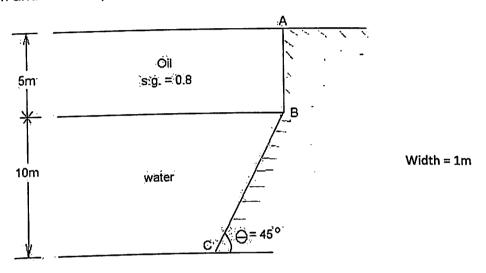
znd

DATE: THURSDAY 5TH JUNE 2021

TIME: 12:50 PM

TIME ALLOWED: 3 HOURS

INSTRUCTION TO CANDIDATES:


- 1. YOU HAVE **10 MINUTES** TO READ THE PAPER. **DO NOT** WRITE DURING THIS PERIOD
 - 2. THERE ARE FOUR QUESTIONS. **ATTEMPT ALL**. WRITE ANSWERS IN THE ANSWER BOOKLET PROVIDED.
- 3. WRITE YOUR **NAME** AND **NUMBER** CLEARLY ON THE **ANSWER BOOK**. DO THIS **NOW**.

MARKING SCHEME:

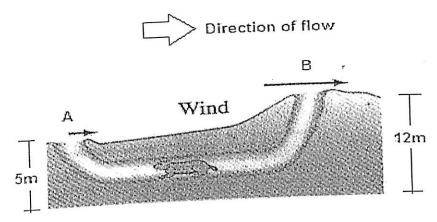
THE QUESTIONS CARRY EQUAL MARKS. TOTAL MARK IS 100

QUESTION ONE

- (a) Define the following terminologies and where necessary with illustrations and equations (2 marks each)
- (i) Thermal systems
- (ii) Newtonian & Non-Newtonian fluids
- (iii) Viscosity
- (iv)Pressure head
- (b) Shown is a reservoir for two immiscible liquids, oil and water. Oil has a depth of 5m and water depth of 10m.

Calculate;

- (i) The pressure head at the bottom of the tank in terms of water head (2 marks)
- (ii) The resultant force at BC (4 marks) and
- (iii) The line of action of the resultant force (6 marks)


QUESTION TWO

(a) Water flows through a pipe AB of diameter, $D_1 = 100$ mm, which is in series with a pipe BC of diameter, $D_2 = 150$ mm in which the mean velocity is 1.5 m/s. At C the pipe forks and one branch CD is of diameter, D_3 such that the

mean velocity is 3m/s. The other branch, CE of diameter, D_4 = 50mm and conditions such that the discharge Q_2 at BC divides that Q_3 = $2Q_4$

Apply continuity principle and determine the following (12 marks);

- i. Flow rates at each point, Q₁, Q₂, Q₃ and Q₄
- ii. The inlet mean velocity, V_1 and outlet velocity, V_4 at point E
- iii. The diameter, D₃ of pipe CD
- (b) A scenario is illustrated pictorially as shown of a tunnel produced by a rat. The other end of the hole (B) is raised higher as shown thereby causing constriction:
 - (i) Which end of the hole, A or B will experience low pressure and explain why? (4 marks)
 - (ii) If the rat is inside the tunnel as shown, will it suffocate? Explain your answer (4 marks)

QUESTION THREE

A pipe bend tapers from a diameter of d_1 of 500mm at inlet to a diameter d_2 of 250mm at outlet and turns the flow through an angle θ of 45°. Measurements of pressure at inlet and outlet show that p_1 = 40 kPa and p_2 = 23 kPa.

If the pipe is conveying oil of density, ρ = 850 kg/m³, Calculate the <u>magnitude and direction</u> of the resultant force on the bend when the oil is flowing at the rate of 0.45m³/s (**20 marks**)

QUESTION FOUR

- (a) What is the main driving force for fluid flow in (1) horizontal pipes (2) open channel flows and (3) pipes inclined at angle? (6 marks)
- (b) Water of density 1000kg/m³ and viscosity of 0.0016 N.s/m² is flowing steadily through a 3.05mm diameter 9.1m-long horizontal pipe steadily at an average velocity of 0.9144m/s. Determine (14 marks);
 - (i) The head loss,
 - (ii) The pressure drop, and
 - (iii) the pumping power requirement to overcome this pressure drop

QUESTION FIVE

- (a) Define the following terminologies where necessary with examples and illustrations (2 marks each)
 - Zeroth law of thermodynamics (i)
 - 1st law of thermodynamics (ii)
 - 2nd law of thermodynamics (iii)
 - Heat Engine (iv)
 - Enthalpy (v)
- (b) Sketch a P-V diagram showing the following processes in a cycle (10 marks)

Isobaric work output of 10.5kJ from an initial volume of Process 1 - 2:

0.028m³ and pressure 140kPa,

Isothermal compression and Process 2-3:

Isochoric heat transfer to its original volume of 0.028m³ and Process 3 - 1:

pressure at 140kPa.

Calculate;

- (1) The maximum volume (m³) of the cycle
- (2) The isothermal work in kJ and
- (3) The net work in kJ