

PNG UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MINING ENGINEERING

2020 FIRST SEMESTER EXAMINATION

Fourth Year Mining and Mineral Process Engineering

MN 413: ENVIRONMENTAL ENGINEERING

DATE:

WEDNESDAY 24TH JUNE 2020

TIME ALLOWED: THREE (3) HOURS

START:

8:20 PM

INFORMATION FOR CANDIDATES

- 1. Write your NAME and Student Number clearly on the ANSWER BOOK. Do it NOW.
- 2. You have ten (10) minutes to read this question paper. You SHOULD NOT write in the answer book during this period.
- 3. There are THREE PARTS: (1) Multiple Choice Questions; (2) Shortanswer Questions; and (3) Short-answer Questions on Waste Management
- 4. Attempt to ANSWER ALL THE QUESTONS
- 5. Marks as indicated
- 6. NO other materials are allowed in the exam room. This includes Mobile Phones, MPs and other devices

PART 1: MULTIPLE CHOICE (40 Marks)

[2 Marks each]

- 1. Which of the following is formed in primary oxidization in toxic metal solution formation?
- a) Iron sulfate and ferric hydroxide
- b) Ferric hydroxide and ferric iron
- c) Iron sulfate and ferrous iron
- d) Ferrous iron and ferric hydroxide
- 2. Which of the following is formed in secondary oxidization in toxic metal solution formation?
- a) Iron sulfate and ferric hydroxide
- b) Ferric hydroxide and ferric iron
- c) Iron sulfate and ferrous iron
- d) Ferrous iron and ferric hydroxide
- 3. Which ironic exchange equation forms ferric hydroxide?
- (a) $FeS2^{+}(aq) + 02 (g) + H^{+} (aq) => Fe3^{+} (aq) + H2(aq)$
- (b) $Fe3^{+}(aq) + 3H20 (aq)$ => $Fe(OH)3 (s) + 3H^{+}(aq)$
- (c) $FeS2(s) + 302(g) + H20(aq) => Fe2^+(aq) + 2SO42^-(aq) + 2H^+(aq)$
- 4. Which of the following statement/s is/are true?
- (a) acidity is an aqueous solution resulting from trace metal dissolution
- (b) fresh pyrite is basic
- (c) tailings treated to pH 7 is always safe from contamination
- (d) a low pH solution is acidic
- e) a, b and c
- 5. Which of the following combination is are environmental impacts in a surface mine?
- (a) Sub-surface disturbances, sedimentation and pollution of rivers
- (b) Sub-surface disturbances, slope instability and acid rock drainage
- (c) Sub-surface disturbances, slope instability and desertification
- (d) Talings dam failures, Sub-surface disturbances, slope instability and desertification

6. Which <u>one</u> of the following is incorrect about factors influencing sulphide oxidation?

- (a) mineral concentration and distribution, mineralogy and physical forms of sulfides
- (b) rate of oxygen supply to the reaction medium by advection or diffusion
- (c) chemical composition of pore water in contact with reaction sites
- (d) immersion of sulphide under water
- (e) water content at the reaction site
- (f) microbial ecology of mineral surfaces

7. Which combination of tailings dam design strategy is most suitable:

- (a) treat tailings, construct dam with clay and silt, firm foundation and allow drainage into it to maintain salinity
- (b) dam must suit LOM tail capacity, treat tailings, use crushed granite for dam construction and slope must be steep to control overflows
- (c) treat tailings, construct dam with clay, design to suit LOM capacity and wall ad found stabilities are paramount
- (d) all of the above

8. Which factor is most important underground mine:

- (a) equipment and machines produce a lot of toxic gas
- (b) man and machines need oxygen to operate
- (c) limit oxidation by water-barricading oxygen from reacting with pit-wall
- (d) underground mine environment lacks fresh air and extraction points are confined and therefore need fresh air from the surface
- (e) b and d

9. Which combination of air toxicity can be expected in an underground mine in PNG?

- (a) carbon dioxide, carbon monoxide, nitrogen dioxide and sulfure dioxide
- (b) carbon dioxide, carbon monoxide, nitrogen dioxide and methane
- (c) carbon monoxide, nitrogen dioxide, methane and hydrogen sulphide
- (d) nitrogen dioxide, methane, hydrogen sulphide and nitrogen nitrite
- (e) all of the above

10. Which one (s) of the following is/are a passive treatment/s?

- (a) planting special plants that absorb metal rich solution
- (b) calcium carbonate treatment at the plant site
- (c) dredging river bed and mixing of tailings with limestone
- (d) a and c are correct
- (e) all of the above

11. Auto-oxidation in an existing AMD condition is caused by

- (a) addition of limestone carbonate .
- (b) addition of zinc and lead
- (c) addition of fresh pyrite and ferric hydroxide
- (d) addition of bacteria and hydrogen peroxides
- (e) b, c and d
- (f) c and d

12. The auxiliary ventilation involves:

- (a) directing air to return airways to the exhaust system
- (b) barricading toxic air using shields across openings
- (c) directing the supply of fresh air in poorly ventilated areas using booster fans

- (d) directing fresh air to be mixed with bad air using booster fans
- (e) mechanised treatment techniques are often expensive

13. Flow of a yellow precipitate in aqueous solution is a:

- a) Ferric hydroxide and sulfuric acid combination
- b) pyrite + water + other solutions of trace metals
- c) ionic solutions of trace metals and acidic bacteria
- d) all of the above

14. What is the major concern regarding deep sea tailings system (DSTS)?

- (a) ARD formation
- (b) destroying tuna/fish breeding grounds, which could lead to tuna stock depletion
- (c) lack of knowledge on the kinetics of ionic exchanges occurring in a deep oceanic environment

- (d) lack of knowledge on seismic activities on oceanography environment can expose tailings to the surface over time
- (e) c and d are correct

15. What condition is best described as an acid mine drainage

- (a) when acidic tailings are released from the mine into the environment
- (b) when mud and slurry flow for long distance and in contact with water and oxygen
- (c) when fish and other organisms are dead and food chain is affected through bioaccumulation
- (d) toxicity emerges when trace metals dissolve into solution through ion transfers
- (f) a and d

16. Which statement/s is/are correct about calcium carbonate?

- (a) universally used to treat mill or heap leach tailings
- (b) adding HIGH pH >10.8 calcium carbonate make trace metals precipitate out of solution
- (c) calcium carbonate reacts with weak acid, thus forming water, carbon dioxide and calcium salts
- (d) all of the above

17. Which statement/s is/are correct?

- (a) placing tailings and waste rock in limestone topography entirely reduce formation of AMD
- (b) rock waste dump must be engineered to allow small scale miners to do artisanal mining after a mine closes
- (c) mercury pollution is always caused by its use in alluvial mining by small scale miners
- (d) stability of competent waste rock dump is crucial for long-term management
- (e) b and d

18. Which statement (s) are correct?

- (a) concentration of hydrogen ion forms acidic solution
- (b) fresh pyrite is acidic
- (c) presence of oxygen and rain water accelerate the ion transfer to form ferric hydroxide
- (d) all of the above

19. Which of the following statement/s is true?

- (a) coal and silica dust are toxic in mine air
- (b) environmental rehabilitation must replace the mountain being mined
- (c) mining causes green-house effects, deforestation and desertification
- (d) long-term effects may occur if tailings are not controlled at process stage
- (e) all of the above
- (f) a and d are correct

20. Which of the following statement/s is true:

- (a) PNG's environmental policy is most efficient in controlling environmental impacts of mining
- (b) PNG's mining and environmental laws provide the guidelines for maintaining water and air quality in line with global standards
- (c) PNG's water and sea use permits provide mining firms to dispose mine waste as they are safe to do so
- (d) PNG allows waste disposals into seas and rivers using permits because its economy relies on mining.

PART 2: Short Answer Questions

[10 Marks each]

- 1. Describe how you could design a most suitable competent waste rock dump with the help of a sketch.
- 2. Describe the core functions of a mine ventilation system in an underground mine as given in the sketch below.

PART 3 (30 marks) [Use equations attached]

[10 Marks each]

- 1. A blasting activity is expected to generate hydrogen nitride (ammonia base) at a rate of 1.5 m³/s. Assuming the tolerance limit is for hydrogen nitride gas is 1% and initial concentration is 0.01%, what is the fresh air flow rate required to dilute the toxic gas immediately after blasting?
- 2. With reference to Q1, if the concentration of hydrogen nitride is expected to be 0.3% right after blasting the stope, what is the required ventilation to dilute this toxicity? Please compare the result with Q1 and discuss on the air quality control
- 3. What is the quantity flow rate of fresh air from a drive in an underground mine if the air velocity is 10 m/s and cross-sectional of a drive is 5m and height is 6m.
- 4. What is the friction pressure loss in a drive in an underground opening where the air volume flow rate is $25 \text{ m}^3/\text{s}$, the opening cross-section area of the drive is 5x6 meters, 500 meters length, and $k = 0.05 \text{ Ns}^2\text{m}^{-4}$. If the flow rate is insufficient, what do you recommend?

$$H_f = R_f^* Q^2 = \frac{kPL}{A^3} * Q^2$$
 where $H_f = \text{friction pressure loss (N/m}^2);$

Q = quantity flow rate (m^3/s); k= friction factor (Ns^2m^{-4}); P = perimeter of the u/g drive (opening in m); L = length (m); A = cross-sectional area (m^2)

Flow rate
$$Q = V \cdot A$$
 (m³/s or m³/min)
 $V = \text{velocity of air flow};$
 $A = \text{cross-sectional area of the gallery}.$

where:

VL = maximum allowed value for the concentration of the contaminant (fraction);

Oq = contaminant flow in the mine atmosphere (m3/s);

Bq = the contaminant concentration in the Q flow (fraction);

O = flow of air required for dilution (m3 / s).