

PNG UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MINING ENGINEERING

2021 FIRST SEMESTER EXAMINATION

Fourth Year Mining and Mineral Process Engineering

MN 413: ENVIRONMENTAL ENGINEERING

DATE:

WEDNESDAY 9TH JUNE 2021

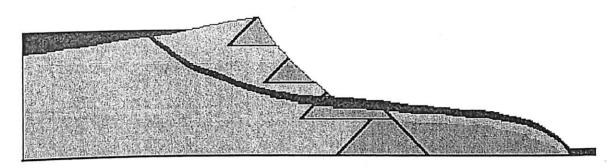
TIME ALLOWED: THREE (3) HOURS

START:

8:20 PM

INFORMATION FOR CANDIDATES

- 1. Write your NAME and Student Number clearly on the ANSWER BOOK. Do it NOW.
- 2. You have ten (10) minutes to read this question paper. You SHOULD NOT write in the answer book during this period.
- 3. There are THREE PARTS: (1) Multiple Choice Questions; (2) Shortanswer Questions; and (3) Short-answer Questions on Waste Management
- 4. Attempt to ANSWER ALL THE QUESTONS
- 5. Marks as indicated
- 6. NO other materials are allowed in the exam room. This includes Mobile Phones, MPs and other devices


PART 1: MULTIPLE CHOICE (40 Marks)

[2 Marks each]

- 1. Which legal framework governs the environmental impacts of the mining industry?
- a) Mining Act (1992)
- b) Mine Safety Act (1957)
- c) Environmental Act (2000)
- d) All of the above
- 2. The <u>factors</u> that encourage the water use permit (WUP) is required in the absence of a legislative framework for mine waste management are:
- a) Physical drivers such as geophysical and seismology that place a restriction on building a tailings dam
- b) Economic drivers such as the need for mining activities to drive economic growth forces the PNG Government use the WUP
- c) Tailings dam is almost unsuitable for PNG conditions
- d) a and b are correct
- 3. The <u>two</u> critical issues associated with waste rock dump design associated with surface mining are:
- a) Leaving behind a healthy environment for re-use of the land after a mine closure and continuous rehabilitation
- b) Revegetation and maintaining stability of the dumps
- c) Safety designs to control AMD formation and stability of dumps
- d) All of the above are correct
- 4. The purpose of mine site rehabilitation to:
- a) Completely restore the mine site to its original landscape before the mine begun
- b) Replicate the original land features and replace the mountain that has been mined-out
- c) Restore the mine-site to a re-useable land that is safe from toxicity and other risks in the post-mine period
- d) To ensure safe designs to control AMD formation and stability of dumps
- e) c and d are correct

- 5. The main risks that are considered in designing an underground mine are:
- a) Control water toxicity and rock stability
- b) The mined-out tunnel must be back-filled to control subsurface subsidence and ground water contamination from AMD
- c) Study the stability orientation of the host rock and apply stability designs and design a suitable mine ventilation system
- d) All of the above risk parameters are important
- 6. Controlling mine-waste at the design and process stages are important because:
- a) Controls are necessary part of the overall mine closure plan
- b) Control ground water contamination from AMD
- c) Control stability and mine ventilation system
- d) Control the mine waste at the plant design and extraction phases because impact management and clean-up costs are excessive
- 7. Which of the following actions best describe the difference between active (1) and passive (2) treatments of mine waste?
- a) Extracting pyrite before disposal and adding limestone at the river site
- b) Control ground water contamination by detoxifying yellowish out-flows
- c) Add detoxifying agents and control AMD by planting acid absorption plants
- d) a and c are correct
- e) All of the above
- 8. Which factors are important considerations in a tailings dam design?
- a) Topography and geological conditions, stability and engineering skills
- b) Topography and geological conditions, design stability and costs
- c) Topography and geological conditions, design stability and costs and engineering designs
- d) All of the above

10. Which is the possible design cause of the Omai gold mine tailings dam failure in the picture bellow?

- a) Loss of strength due to lack of toe foundation, thus causing internal erosion
- b) Loss of strength due to lack of compaction and foundation and infill with degradable materials
- c) Loss of strength due to use of degradable materials causing loss of internal integrity (cohesion) and erosion
- d) All of the above

11 Which statement is mostly correct about DSTS design?

- a) It is the safest means of mine tailing disposal
- The effects of land-based riverine tailing disposal are highly risky as they are controlled by topography, geological and whether conditions
- c) The only risks of DSTS are seismic activities, tectonic upswelling of seabed
- d) There is limited understanding on how the tails undergoes the kinetic energy changes leading to acidity of the sea environment
- e) All of the above
- f) b, c and d are correct

12) Which of the following is formed in primary oxidization in toxic metal solution formation?

- a) Iron sulfate and ferric hydroxide
- b) Ferric hydroxide and ferric iron
- c) Iron sulfate and ferrous iron
- d) Ferrous iron and ferric hydroxide

ä

a) Iron sulfate and ferric hydroxide

metal solution formation?

- b) Ferric hydroxide and ferric iron
- c) Iron sulfate and ferrous iron
- d) Ferrous iron and ferric hydroxide

14) Which ironic exchange equation forms ferric hydroxide?

- (a) $FeS2^+(aq) + 02 (g) + H^+(aq) => Fe3^+(aq) + H2(aq)$
- (b) Fe3⁺(aq) + 3H20 (aq) => Fe(OH)3 (s) + 3H⁺(aq)
- (c) FeS2(s) + 302 (g) + H20 (aq) => Fe2+(aq) + 2SO42-(aq) + 2H+ (aq)

15) Which of the following statement/s is/are true?

- (a) Acidity is an aqueous solution resulting from trace metal dissolution
- (b) Fresh pyrite is basic
- (c) Tailings treated to pH 7 is always safe from contamination
- (d) a low pH solution is acidic
- e) a, b and c

16) Which <u>one</u> of the following is incorrect about factors influencing sulphide oxidation?

- (a) Mineral concentration and distribution, mineralogy and physical forms of sulfides
- (b) Rate of oxygen supply to the reaction medium by advection or diffusion
- (c) Chemical composition of pore water in contact with reaction sites
- (d) Immersion of sulphide under water
- (e) Water content at the reaction site
- (f) Microbial ecology of mineral surfaces

17) Which combination of tailings dam design strategy is most suitable:

- (a) Treat tailings, construct dam with clay and silt, firm foundation and allow drainage into it to maintain salinity
- (b) Dam must suit LOM tail capacity, treat tailings, use crushed granite for dam construction and slope must be steep to control overflows
- (c) Treat tailings, construct dam with clay, design to suit LOM capacity and wall ad found stabilities are paramount
- (d) All of the above

18) Which factor is most important underground mine:

- (a) Equipment and machines produce a lot of toxic gas
- (b) Man and machines need oxygen to operate
- (c) Limit oxidation by water-barricading oxygen from reacting with pit-wall
- (d) Underground mine environment lacks fresh air and extraction points are confined and therefore need fresh air from the surface
- (e) b and d

19) Auto-oxidation in an existing AMD condition is caused by

- (a) Addition of limestone carbonate
- (b) Addition of zinc and lead
- (c) Addition of fresh pyrite and ferric hydroxide
- (d) Addition of bacteria and hydrogen peroxides
- (e) b, c and d
- (f) c and d

20) Flow of a yellow precipitate in aqueous solution is a:

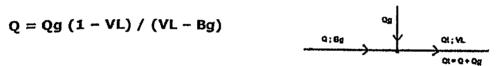
- a) Ferric hydroxide and sulfuric acid combination
- b) Pyrite + water + other solutions of trace metals
- c) Ionic solutions of trace metals and acidic bacteria
- d) All of the above

PART 2: Short Answer Questions

[10 Marks each]

- Describe the design of most safe and competent waste rock dump with the help of a sketch. Explain the main safety parameters safely
- Describe and compare the disadvantages and advantages of a riverine tailing disposal system and the deep-sea tailing disposal system. Defend your choice and explain why one of the methods is the most suitable tails disposal system.

PART 3 Perform the calculations and explain the answer. <u>2 Marks will</u> <u>be deducted</u> for not explaining the answer. [Use equations attached] [5 Marks each]


- 1. A blasting activity is expected to generate hydrogen nitride (ammonia base) at a rate of 1.5 m³/s. Assume the tolerance limit is for hydrogen nitride gas is 5% and initial concentration is 0.05%. What quantity of fresh air flow rate is required to dilute the toxic gas immediately after blasting?
- 2. With reference to Q1, if the concentration of hydrogen nitride is expected to be 0.5% right after blasting the stope, what is the required ventilation to dilute this toxicity? Please compare the result with Q1 and discuss what type of air quality control is needed.
- 3. What is the quantity flow rate of fresh air from a drive in an underground mine if the air velocity is 30 m/s and cross-sectional of a drive is 5m and height is 6m. Is this flow rate suitable for the condition in Q 2?
- 4. What is the friction pressure loss in a drive in an underground opening where the air volume flow rate is 30 m³/s, the opening cross-section area of the drive is 6x6 meters, 500 meters length, and k = 0.08 Ns²m⁴. If the flow rate is insufficient, what would you recommend?

EQUATIONS FOR PART 3

 $H_f = R_f^*Q^2 = \frac{kPL}{A^3} * Q^2$ where $H_f =$ friction pressure loss (N/m²);

Q = quantity flow rate (m^3/s); k= friction factor (Ns^2m^{-4}); P = perimeter of the u/g drive (opening in m); L = length (m); A = cross-sectional area (m^2)

Flow rate $Q = V \cdot A$ (m³/s or m³/min) V = velocity of air flow;A = cross-sectional area of the gallery.

Where:

VL = maximum allowed value for the concentration of the contaminant (fraction);

Og = contaminant flow in the mine atmosphere (m3/s);

Bg = the contaminant concentration in the Q flow (fraction);

Q = flow of air required for dilution (m3 / s).