THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MINING ENGINEERING 2020 SECOND SEMESTER EXAMINATION

THIRD YEAR MINERAL PROCESSING ENGINEERING

MP322- PROCESS TECHNOLOGY II

DATE:

FRIDAY 23RD OCTOBER, 2020

TIME:

8:20AM

VENUE:

MN003

TIME ALLOWED: 3.0 HOURS

INFORMATION FOR STUDENTS

- 1. You have 10 minutes to read the paper. You SHOULD NOT write during this time.
- 2. There are FIVE (5) questions in this paper. Answer ALL FIVE (5) questions
- 3. Answer all questions in the answer books and graph papers provided. No other written material will be accepted.
- 4. Calculators and drawing equipment are permitted in the examination room. Notes, mobile phones, laptops and textbooks are not allowed.
- 5. WRITE YOUR **NAME** AND **ID NUMBER** CLEARLY ON THE ANSWER BOOK-DO IT NOW
- 6. Marks for each question are as indicated

•

QUESTION 1

- a) Define the following;
 - I. Boundary layer
 - II. Laminar Boundary layer
 - III. Turbulent Boundary layer
 - IV. Drag Force
 - V. Reynolds Number
 - VI. Terminal falling velocity
- b) Provided the graph below; briefly explain the four regions, a, b, c & d in relation to the Reynolds number.

Use the graph of $\left(\frac{R'}{\rho v_0^2}\right) Re'^2 / \left(\frac{R'}{\rho v_0^2}\right) Re'^{-1}$ vs Re' provided at the back to answer questions c and d;

- c)
 I. Calculate the terminal falling velocity of a bauxite particle of diameter 0.71 mm settling in water. Density of bauxite is 2600 kg/m³.
 - II. Which region is the particle settling in?
 - III. Determine the total drag force acting on the particle
- d)
 Determine the diameter of a covellite particle settling in water at a settling velocity of 9cm/s. The density of covellite is 4700 kg/m³.
 - II. Which region is the particle settling in?
 - III. Calculate the total drag force acting on the particle?

[6+4+5+5=20 Marks]

QUESTION 2

- a) State and briefly explain the factors that affect the thickening rate.
- b) Provide the two (2) main functions of a thickener
- c) Provide the two(2) main design requirements of a thickener
- d) Batch settling tests at initial solids concentrations ranging from 10 to 40 kg solids/m³ were carried out and results for the concentrations and fluxes are shown in the table below. The slurry had an initial concentration of 3kg solids/m³. The thickener isrequired to give an underflow concentration of 150 kg/m³ for a feed rate of 3 m³/s of slurry.

Test	1	2	3	4
$C (kg/m^3)$	10	20	30	40
ψ (kg/m ² s)	0.12	0.15	0.21	0.25

Use the Talmage and Fitch method to;

- (I) Obtain the settling rate (R) values for each concentration
- (II) Determine the values of $\left(\frac{\frac{1}{c} \frac{1}{c_u}}{R}\right)$ for each concentration
- (II) Calculate the area of the thickener to meet the design requirement

[6+2+2+10= 20 Marks]

QUESTION 3

- a) State at least five (5) factors to be considered when selecting filtration equipment
- b) Provide the five (5) factors the filtration rate
- c) Give the four (4) main reasons for carrying out drying
- d) State and briefly explain the three (3) types of drying processes

[5+5+4+6= 20 Marks]

QUESTION 4

Use the psychometric chart provided to answer the questions;

- a) Provided the $T_{dry} = 40$ °C and the $T_{wet} = 25$ °C, find;
 - i. Relative Humidity (RH)
 - ii. Dew point Temperature (T_{dp})
 - iii. Humidity Ratio (HR)
 - iv. Specific volume (V)
 - v. Enthalpy (h)
- b) During a heating and humidifying process, the dry bulb temperature was increased from 40°C to 50°C. If the wet bulb temperature before the increase is 25°C, determine the following from the psychometric chart;
- (i) Draw this psychometric process on the chart indicating the various properties of air
- (ii) The wet bulb temperature after the temperature increase (T_{w2})
- (iii) The Humidity ratio before the temperature increase (HR_1)
- (iv) The Humidity ratio after the temperature increase (HR_2)
- The Relative Humidity after the increase (RH_2)

[10+10=20 Marks]

OUESTION 5

- a) State and briefly explain the three (3) modes of heat transfer and also provide the laws governing them
- b) Provided the following information;

Material	Aluminium	Copper	Steel	Concrete
(k) W/m .°C	201	385	63	0.1

- I. Determine the heat transfer rate per unit area of a steel plate 100mm long and 250mm wide having a thickness of 30mm. The surfaces have a temperature difference of 85°C.
- II. Calculate the thermal resistance of the steel plate
- c) The heat flux (\dot{q}) is 4000 W/m² at the surface of an electric heater. The heater temperature is 150°C and is cooled by air at 60°C. The heater is 300mm long and 450mm wide.
 - I. Determine the convective heat transfer coefficient (h)
 - II. Calculate the rate of heat transfer (Q)
- d) A certain black body has a true surface area of 15 m² and an envelope area of 7 m². It has a surface temperature of 60°C and is situated in a dark room at 13°C. The surface heat transfer coefficient is 5.5 W/m² K.

Calculate;

- I. The radiated heat transfer
- II. The convected heat transfer rate
- III. And the total heat transfer.

[6+4+4+6=20 Marks]

End of Paper

-:-

Formula Sheet:

$$\left(\frac{R'}{\rho v_0^2}\right) Re'^2 = \frac{2d^3(\rho_s - \rho)\rho g}{3\mu^2}$$

$$\left(\frac{R'}{\rho v_0^2}\right) Re'^{-1} = \frac{2\mu g}{3\rho^2 v_0^3} (\rho_s - \rho)$$

$$R' = \frac{2}{3}d(\rho_s - \rho)g$$

$$F = 3\pi \mu dv$$

$$F = 3\pi\mu dv \left(1 + 0.15Re^{t^{0.687}}\right)$$

$$F = 0.055 \,\pi d^2 \rho v^2$$

$$F=0.0125 \,\pi d^2 \rho v^2$$

$$A = \frac{\frac{1}{c} - \frac{1}{c_u}}{R} \times QC$$

$$Q = k. \frac{A.\Delta T}{L}$$

$$Q = A.h\left(T_s - T_f\right)$$

$$Q = \sigma.A.\left(T_1^4 - T_2^4\right)$$

